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 There are Multiple Methods of Discretization, Including:!

•  Backward difference!
–  Approximates derivative!

•  Forward Difference!
–  Approximates integral!

•  Combined Forward/Backward Difference!
–  Better derivative estimate!

•  Bilinear transform!
–  End point trapezoidal integration!

•  Impulse invariance!
–  Sampled version of impulse response!

•  Transition Matrix Method!
–  Solve first order matrix differential equation!

•  Bootstrap Method (overkill) 
!a. Use xk and xk-1 to compute xʼk  
!b. Use forward difference to compute xk+1  
!c. Use backward difference to compute xʼk+1  
!d. Use bilinear transform to recompute xk+1 !
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 Multiple Methods of Discretization Provide Slightly 
Different Difference Equations!

•  Backward difference  

•  Forward Difference  

•  Combined Forward/Backward  

•  Bilinear transform  

•  Impulse invariance 

•  Transition Matrix Method!
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 Example: A simple Integrator!

•  Backward difference  

•  Forward Difference  

•  Bilinear transform  

•  This can lead to:!
–  Time wasting arguments!
–  Confusing requirements!
–  Questions about which transformation to use for each compensator!
–  Incorporation of transformation into delivered code!
–  Software design and coding errors!
–  Wasted time in integration!

yk = yk−1 +T ⋅ xk

yk = yk−1 +T ⋅ xk−1

yk = yk−1 +
T
2
⋅ xk + xk−1( )
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Bilinear Transform Produces All First Order 
Compensators and Filters from the Same General Model!

Continuous Time  
Transfer Function 

Bilinear  
Transformation 

Discrete Time  
Transfer Function 

Difference  
Equation!

H s( ) = k ⋅ τz ⋅ s + uz
τp ⋅ s + up

where :
τz, τp ≥ 0
uz, up = 0 or 1[ ]
k ≠ 0

s = 2
T
⋅
1− z−1

1+ z−1
where : T = update time

H z( ) = b0 + b1 ⋅z
−1

1− a1 ⋅z−1
where :

a1 =
2 ⋅ τp −up ⋅Ts
2 ⋅ τp + up ⋅Ts

b0 = k ⋅
2 ⋅ τz + uz ⋅Ts
2 ⋅ τp + up ⋅Ts

b1 = −k ⋅ 2 ⋅ τz −uz ⋅Ts
2 ⋅ τp + up ⋅Ts

    yn = a1 ⋅ yn−1 + b0 ⋅ xn + b1 ⋅ xn−1
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Same Difference Equation Provides 6 Different First 
Order Compensators Depending on Model Parameters!

Type: k τz uz τp up

Lead Compensation ≠ 0 > τp 1 > 0 1

Lag Compensation ≠ 0 > 0 1 > τz 1

Low Pass Filter (LPF) ≠ 0 = 0 1 > 0 1

Differential LPF ≠ 0 = 1 0 > 0 1

Integrator ≠ 0 = 0 1 1 0

Proportional plus
Integral (PI) = kI ≠ 0 kP/kI ≠ 0 1 1 0
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Clamping and Preset is Accomplished by Modifying the 
Stored State Regardless of Type!

•  Accomplished by Changing the Stored Previous State Before Next 
Iteration 

•  Clamping:!
–  Clamp yn before output and save as previous value!
–  Output is clamped!
–  On next iteration, previous state is clamped (no build-up)!
–  For PI, Equivalent to separating out Integrator and clamping its state!

•  Preset:!
–  Compute initialization value!
–  Store as previous state before first or next execution!

    yn = a1 ⋅ yn−1 + b0 ⋅ xn + b1 ⋅ xn−1


