
© 2000 K. P. Haggerty, ARR!

1!
P.O. Box 2875 • El Segundo, CA 90245 • (310) 607-9609 • Web: www.hasys.com!

1 © 2000 Kip Haggerty, ARR!

 There are Multiple Methods of Discretization, Including:!

•  Backward difference!
–  Approximates derivative!

•  Forward Difference!
–  Approximates integral!

•  Combined Forward/Backward Difference!
–  Better derivative estimate!

•  Bilinear transform!
–  End point trapezoidal integration!

•  Impulse invariance!
–  Sampled version of impulse response!

•  Transition Matrix Method!
–  Solve first order matrix differential equation!

•  Bootstrap Method (overkill) 
!a. Use xk and xk-1 to compute xʼk  
!b. Use forward difference to compute xk+1  
!c. Use backward difference to compute xʼk+1  
!d. Use bilinear transform to recompute xk+1 !

2 © 2000 Kip Haggerty, ARR!

 Multiple Methods of Discretization Provide Slightly
Different Difference Equations!

•  Backward difference  

•  Forward Difference  

•  Combined Forward/Backward  

•  Bilinear transform  

•  Impulse invariance 

•  Transition Matrix Method!

˙ y k =
yk − yk−1

T
s = 1− z−1

T
z = 1

1− s ⋅T

˙ y k =
yk+1 − yk

T
s = z −1

T
z = 1+ s ⋅T

˙ y k =
yk+1 − yk−1

2 ⋅T
s = z − z−1

2 ⋅T
˙ y k+1 + ˙ y k

2
=

yk+1 − yk

T
s = 2

T
⋅
1− z−1

1+ z−1 z =
1+ T

2
s

1− T
2

s
z = es⋅T

˙ y = A ⋅ y t() + B ⋅ x t()

yk+1 = e
A⋅T ⋅ yk + eA⋅ T− t() ⋅B ⋅ x k ⋅T + t()

0

T

∫ ⋅dt =Φ ⋅ yk + Γk

© 2000 K. P. Haggerty, ARR!

2!
P.O. Box 2875 • El Segundo, CA 90245 • (310) 607-9609 • Web: www.hasys.com!

3 © 2000 Kip Haggerty, ARR!

 Example: A simple Integrator!

•  Backward difference  

•  Forward Difference  

•  Bilinear transform  

•  This can lead to:!
–  Time wasting arguments!
–  Confusing requirements!
–  Questions about which transformation to use for each compensator!
–  Incorporation of transformation into delivered code!
–  Software design and coding errors!
–  Wasted time in integration!

yk = yk−1 +T ⋅ xk

yk = yk−1 +T ⋅ xk−1

yk = yk−1 +
T
2
⋅ xk + xk−1()

4 © 2000 Kip Haggerty, ARR!

Bilinear Transform Produces All First Order
Compensators and Filters from the Same General Model!

Continuous Time  
Transfer Function 

Bilinear  
Transformation 

Discrete Time  
Transfer Function 

Difference  
Equation!

H s() = k ⋅ τz ⋅ s + uz
τp ⋅ s + up

where :
τz, τp ≥ 0
uz, up = 0 or 1[]
k ≠ 0

s = 2
T
⋅
1− z−1

1+ z−1
where : T = update time

H z() = b0 + b1 ⋅z
−1

1− a1 ⋅z−1
where :

a1 =
2 ⋅ τp −up ⋅Ts
2 ⋅ τp + up ⋅Ts

b0 = k ⋅
2 ⋅ τz + uz ⋅Ts
2 ⋅ τp + up ⋅Ts

b1 = −k ⋅ 2 ⋅ τz −uz ⋅Ts
2 ⋅ τp + up ⋅Ts

 yn = a1 ⋅ yn−1 + b0 ⋅ xn + b1 ⋅ xn−1

© 2000 K. P. Haggerty, ARR!

3!
P.O. Box 2875 • El Segundo, CA 90245 • (310) 607-9609 • Web: www.hasys.com!

5 © 2000 Kip Haggerty, ARR!

Same Difference Equation Provides 6 Different First
Order Compensators Depending on Model Parameters!

Type: k τz uz τp up

Lead Compensation ≠ 0 > τp 1 > 0 1

Lag Compensation ≠ 0 > 0 1 > τz 1

Low Pass Filter (LPF) ≠ 0 = 0 1 > 0 1

Differential LPF ≠ 0 = 1 0 > 0 1

Integrator ≠ 0 = 0 1 1 0

Proportional plus
Integral (PI) = kI ≠ 0 kP/kI ≠ 0 1 1 0

6 © 2000 Kip Haggerty, ARR!

Clamping and Preset is Accomplished by Modifying the
Stored State Regardless of Type!

•  Accomplished by Changing the Stored Previous State Before Next
Iteration 

•  Clamping:!
–  Clamp yn before output and save as previous value!
–  Output is clamped!
–  On next iteration, previous state is clamped (no build-up)!
–  For PI, Equivalent to separating out Integrator and clamping its state!

•  Preset:!
–  Compute initialization value!
–  Store as previous state before first or next execution!

 yn = a1 ⋅ yn−1 + b0 ⋅ xn + b1 ⋅ xn−1

