

$$\begin{split} & \text{Multiple Methods of Discretization Provide Slightly} \\ & \text{Different Difference Equations} \\ & \cdot \text{ Backward difference } \dot{y}_k = \frac{y_k - y_{k-1}}{T} \quad s = \frac{1 - z^{-1}}{T} \quad z = \frac{1}{1 - s \cdot T} \\ & \cdot \text{ Forward Difference } \dot{y}_k = \frac{y_{k+1} - y_k}{T} \quad s = \frac{z - 1}{T} \quad z = 1 + s \cdot T \\ & \cdot \text{ Combined Forward/Backward } \dot{y}_k = \frac{y_{k+1} - y_{k-1}}{2 \cdot T} \quad s = \frac{z - z^{-1}}{2 \cdot T} \\ & \cdot \text{ Bilinear transform } \frac{\dot{y}_{k+1} + \dot{y}_k}{2} = \frac{y_{k+1} - y_k}{T} \quad s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} \quad z = \frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s} \\ & \cdot \text{ Impulse invariance } z = e^{s \cdot T} \\ & \cdot \text{ Transition Matrix Method } \dot{y} = A \cdot y(t) + B \cdot x(t) \\ & y_{k+1} = e^{A \cdot T} \cdot y_k + \int_0^T e^{A(T - t)} \cdot B \cdot x(k \cdot T + t) \cdot dt = \Phi \cdot y_k + \Gamma_k \\ \text{@ 2000 Kip Haggerty, ARR} \end{matrix}$$

Туре:	k	τ _z	Uz	$ au_{p}$	u _p
Lead Compensation	≠ 0	> τ _p	1	> 0	1
Lag Compensation	≠ 0	> 0	1	> τ _z	1
Low Pass Filter (LPF)	≠ 0	= 0	1	> 0	1
Differential LPF	≠ 0	= 1	0	> 0	1
Integrator	≠ 0	= 0	1	1	0
Proportional plus Integral (PI)	= k _l ≠ 0	k _P /k _I ≠ 0	1	1	0

Clamping and Preset is Accomplished by Modifying the Stored State Regardless of Type

- Accomplished by Changing the Stored Previous State Before Next Iteration
 - $y_n = a_1 \cdot y_{n-1} + b_0 \cdot x_n + b_1 \cdot x_{n-1}$

- Clamping:
 - Clamp y_n before output and save as previous value
 - Output is clamped
 - On next iteration, previous state is clamped (no build-up)
 - For PI, Equivalent to separating out Integrator and clamping its state
- · Preset:
 - Compute initialization value
 - Store as previous state before first or next execution

© 2000 Kip Haggerty, ARR

6